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1. Introduction

Although Boneh and Franklin use the Weil pairing on elliptic curves to create Identity-

Based Encryption (IBE) systems [2], they also mention that the Tate pairing could be used
in place of the Weil pairing to speed up calculations. Here we �rst present a simpli�ed
IBE system that utilizes some basic properties of the Weil pairing. Next we de�ne the Tate

pairing and show how to compute both the Weil and the Tate pairings. Lastly, we present
and prove a relationship between the two pairings which is often informally summarized as

\The Weil pairing is just two Tate pairings."

2. A Simple IBE Key Establishment

In [2] the Weil pairing on an elliptic curve is used for identity-based key establishment

and encryption methods. Here we give a simpli�ed version of the key establishment in [2]
for the purpose of motivating a comparison between the relative performances of the Tate
and Weil pairings.

2.1. Elliptic Curve Credentials

To start, an elliptic curve, E, is chosen over some �eld Fq such that E(Fq ) satis�es the

following two properties: (I) the size of E(Fq ), denoted #E(Fq ), is a small multiple of a large
prime r, and (II) there exists a small positive integer d such that r j qd � 1. The second

property guarantees that the complete r-torsion, E[r], lies in E(Fqd ) [1]. Ideally, d should be

chosen so that the square-root attack on the discrete-log problem in the order-r subgroup of

E(Fq ) and the factor-base attack on the discrete-log problem in the multiplicative group of

the �eld Fqd are balanced in diÆculty.

We will denote by R the order-r subgroup of E(Fq ). Since E[r] � E(Fqd ), there exists a

point H 2 E(Fqd ) such that H is r-torsion but H =2 R.
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2.2. The Weil Pairing on Elliptic Curves

If A and B are r-torsion points on some elliptic curve E(Fqd ), let us denote the r-Weil

pairing of A and B by er(A;B). Then er is a map

er(�; �) : E[r]� E[r]! F
�

qd
:

A sound de�nition of the Weil pairing and an exposition of its properties can be found in
[9]. For our purposes, the pivotal property of the Weil pairing is its bilinearity. That is, for

E an elliptic curve with A0; A1; B0; B1 2 E[r]:

er(A0 + A1; B0) = er(A0; B0) � er(A1; B0);

er(A0; B0 +B1) = er(A0; B0) � er(A0; B1):

In particular, for any integer k we have

er(kA0; B0) = er(A0; kB0) = er(A0; B0)
k:

Another property of the Weil pairing is that the Weil pairing of a point with itself is trivial:
er(A0; A0) = 1: This property is not especially important in our example, but it will be used
later for comparison to the Tate pairing.

2.3. Identity-Based Key Establishment Set-Up

The identity-based encryption scheme presented here is run by a trusted central authority.

It is a master-key system in which the public keys are determined from a user's ID. The
central authority chooses a public point H as in x2.1 and a random integer s modulo r which
will be the master-key and kept secret. From these, the central authority computes the

universal public key
U := sH:

Upon enrollment in the system, the user is given a long-term key pair, V; C 2 R by the

central authority. The public key C is computed from the user's ID in a publicly known way

and the private key V is

V := sC:

2.4. Key Agreement for Alice and Bob

Suppose that Alice and Bob are both users of this IBE system and that Alice wishes to

form a key agreement with Bob. Since they are members of the system, Alice and Bob have

long-term key pairs (VA; CA) and (VB; CB), respectively. To begin key establishment, Alice
chooses a pseudo-random integer zA and computes

WA := zAH:
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The pair (zA;WA) is her one-time key pair, and she transmits WA to Bob, keeping zA secret.

Now, Alice computes the secret shared value, SSV , as

SSVA = er(zACB; U); (1)

and Bob computes it as

SSVB = er(VB;WA): (2)

Equations (1) and (2) are equal by the bilinearity of the Weil pairing:

SSVB = er(VB;WA) = er(sCB; zAH)

= er(zACB; sH)

= er(zACB; U) = SSVA:

Since this IBE scheme hinges on the computation of the Weil pairing, it would be ben-
e�cial to �nd a similar bilinear mapping that can be computed more eÆciently. The Tate
pairing is a choice candidate.

3. The Tate Pairing

The Tate pairing (also sometimes referred to as the Tate-Lichtenbaum pairing) was �rst

introduced into the world of cryptography by Frey and Ruck [4] as an extension of the work
done by Menezes, Okamoto, and Vanstone [7]. It was later mentioned in [2] as a means of
speeding up the encryption and decryption schemes. Shortly thereafter, Galbraith released

a paper [5] in which he outlined the basics of the Tate pairing and its computation. He also
gave some experimental timings and an explanation as to why the Tate pairing is faster to
compute than the Weil pairing.

3.1. De�nition and Properties

Before proceeding to the Tate pairing, we set some notation. For a point P 2 E, we

let (P ) denote the divisor of P . Thus, (P ) + (Q) denotes a sum in the divisor group and

is a divisor of degree 2, whereas (P + Q) denotes a divisor of degree 1, the point being the
elliptic curve sum of the points P and Q. For a rational function g on E and a divisor

D =
P

P2E
nPP , we let g(D) denote the value

Q
P2E

g(P )nP . We say that two divisors

D;D0 are disjoint if their supports are disjoint; i.e., nP 6= 0 in D implies that nP = 0 in D0

and nP 6= 0 in D0 implies that nP = 0 in D.

In [5], the Tate pairing is de�ned as follows: Let G := E(Fqd ) where q and d satisfy the

requirements in x2.1. Let O denote the identity of G, commonly known as the \point at

in�nity." Then the Tate pairing is a mapping

< �; � > : E[r]�G=rG! F
�

qd
=(F�

qd
)r: (3)
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The right-hand-side of (3), F�
qd
=(F�

qd
)r, can be thought of as the set of equivalence classes in

F
�

qd
where a � b if and only if there exists c 2 F

�

qd
such that a = bcr. Galbraith calls this

\equivalence modulo rth powers."

For points P 2 E[r] and Q 2 G=rG we de�ne the Tate pairing to be

< P;Q >:= g(D);

where g is a rational function with div(g) = r((P )� (O)), D � (Q)� (O) and the supports

of D and div(g) are disjoint.

Since g(D) 2 F
�

qd
, the value of < P;Q > de�nes an equivalence class in F

�

qd
=(F�

qd
)r.

However, its de�nite value is dependent on the choice of D. In most algorithms D has the

form D = (Q + S) � (S) for some S 2 G. In such cases we will denote this dependence by

< P;Q >S. To achieve a value in F
�

qd
that is independent of S, < P;Q >S must be raised to

the power (qd�1)=r to eliminate rth powers. In fact, some authors (e.g. [3]) de�ne the Tate
pairing to be < P;Q >(qd�1)=r since typically a unique value is needed. For our purposes we

will let t(P;Q) denote < P;Q >(qd�1)=r.

The Tate pairing can be shown [4] to be well-de�ned, non-degenerate, and, most impor-
tantly, bilinear, and thus t(kP;Q) = t(P; kQ) = t(P;Q)k. This allows the Tate pairing to

be used in place of the Weil pairing in most cryptographic applications. However, one key
di�erence between the Tate pairing and the Weil pairing is that the Tate pairing of a point
with itself is not necessarily trivial: t(P; P ) 6= 1. This fact allowed Frey, Muller and Ruck to

use the Tate pairing to reduce the discrete logarithm problem on certain elliptic curves to

the discrete logarithm problem over a �nite �eld in cases in which the Weil pairing fails to
do so [3].

3.2. Weil and Tate Pairing Computations

In an often cited but never published paper by Miller [8], an algorithm is given for
computing a rational function g with div(g) = r((P ) � (O)) for a given P 2 E[r]. This

algorithm uses a \double and add" method to compute rP = O, while along the way

constructing a rational function from the lines and verticals that arise. This algorithm can

easily be modi�ed [5] to return the Tate pairing, < P;Q >S. The modi�ed algorithm takes

as input the point P 2 E[r], the point Q 2 G, and a \good" point S 2 G. (The limitations
on S will be discussed shortly.) The modi�ed algorithm returns the value of g computed at

the divisor

D = (Q+ S)� (S) � (Q)� (O): (4)

During the \double and add" method of computing rP , various other multiples of P arise.

We will refer to this set of multiples of P as the addition chain of P and denote it by

A(P ) = fP; a1P; a2P; :::;Og. The only restriction on S is that Q + S; S =2 A(P ). Typically,
when q is large and the gods are friendly, such an S is easily found.
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For P;Q 2 E[r] Silverman's alternate de�nition ([9], Ch.3, Exer.16) is amenable to

computing the Weil pairing. Given disjoint divisors, A and B, equivalent to (P )� (O) and
(Q)� (O), respectively, the Weil pairing of P and Q is given by

er(P;Q) =
fA(B)

fB(A)
; (5)

where div(fA) = rA and div(fB) = rB.

In [6], Menezes provides a way to compute (5). One �rst uses Miller's algorithm to

produce rational functions f1 and f2 such that div(f1) = r((P + T1) � (O)) and div(f2) =

r((T1) � (O)) where T1 is some r-torsion point. Setting fA = f1=f2 gives the desired result

of div(fA) = r((P + T1)� (T1)) � r((P )� (O)). Similarly, Miller's algorithm can produce a

rational function fB using another r-torsion point T2 such that div(fB) = r((Q+T2)�(T2)) �
r((Q)� (O)). We then let A = (P +T1)� (T1) and B = (Q+T2)� (T2) and evaluate (5). In
the case of the Weil pairing, T1 and T2 need only to be chosen so that A and B are disjoint.

Computing the Tate pairing is easier than computing the Weil pairing. The modi�ed

version of Miller's algorithm already returns the value g(D) =< P;Q >S where div(g) =
r[(P ) � (O)] and D is as in (4). To obtain our unique value, t(P;Q), we only need to

exponentiate in the �eld Fqd by (qd � 1)=r.

4. The Weil is Two Tates

As can be seen in the previous section, the methods for computing the two pairings

are very similar. This leads one to wonder if there is a nice relation between them. In
many texts (e.g. [4], [5]), words to the e�ect of \The Weil pairing is just two applications
of the Tate pairing" are tossed around without care and rarely elaborated on. Through a

lot of introspection and a little luck, we were able to �nd a simple expression relating the
pairings and indeed show that the computation of the Weil pairing can be done through two

computations of the Tate pairing. In fact, the rest of this section is directed toward showing
that for any P;Q 2 E[r]

er(P;Q) =
< P;Q >S

< Q;P >�S

: (6)

4.1. The Proofs

We �rst state a general lemma whose proof requires a lot of ugly algebra. To provide

cleanliness, we introduce some notation. For two points C;D, let `C;D denote the line through

C and D, and letMC;D denote its slope (provided it is de�ned). For a point C, let �C denote

the vertical line at C, i.e., �C = `C;O.
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Lemma 1 Let E be an elliptic curve over a �eld K and suppose that the points P;Q and S

on E satisfy one of the following criteria:

(i) S =2 fP �Q;P � S;�Q� S; P;�Q;�Sg;

(ii) S; P;Q 2 E[2];

(iii) S = O:

Then

�P�S

`P;�S
((Q+ S)� (S)) =

�Q+S

`Q;S
((P � S)� (�S)): (7)

We assume the equation for E is in Weierstrass form. Note: The criteria for P , Q, and

S are solely to assure that both sides of (7) are de�ned (numerator and denominator are

allowed to simultaneously vanish, in which case we let the quotient be 1). We need to show
that

`P;�S(S)

`P;�S(Q + S)
�
�P�S(Q+ S)

�P�S(S)
=

`Q;S(�S)

`Q;S(P � S)
�
�Q+S(P � S)

�Q+S(�S)
� (8)

Proof.If we regard lines as rational functions on E, then for points A;B;C of E such that

the following expressions make sense, we have that

`A;B(C) = yC � yA �MA;B(xC � xA)

= yC � yB �MA;B(xC � xB)

�A(C) = xC � xA;

where xA and yA denote the coordinates of a point A. Furthermore, x�A = xA. Hence,

`P;�S(S) = yS � y�S �

�
yP � y�S

xP � x�S

�
(xS � x�S) = yS � y�S;

similarly, `Q;S(�S) = y�S � yS = �`P;�S(S): From the de�nition, �P�S(S) = xS � xP�S,

�Q+S(�S) = x�S � xQ+S; and �Q+S(P � S) = xP�S � xQ+S = ��P�S(Q + S). Hence, it

suÆces to show that

�`Q;S(�S)

`P;�S(Q+ S)
�
�P�S(Q+ S)

xS � xP�S
=

`Q;S(�S)

`Q;S(P � S)
�
��P�S(Q+ S)

x�S � xQ+S

� (9)

The numerators of (9) are equal, so we need only show that

`P;�S(Q+ S) � (xS � xP�S) = `Q;S(P � S) � (x�S � xQ+S): (10)
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The addition formulas ([9], p. 58) give

y�S = �yS � a1xS � a3;

and

yQ+S = �(yS + a1xQ+S + a3 +MQ;S(xQ+S � xS)):

Substituting the above values for y�S and yQ+S into the expression for `P;�S(Q + S) and

using the fact that x�S = xS , we see that

`P;�S(Q+ S) = yQ+S � y�S �MP;�S(xQ+S � x�S)

= �[(yS + a1xQ+S + a3 +MQ;S(xQ+S � xS)]

�[�yS � a1xS � a3]

�MP;�S(xQ+S � xS)

= �a1(xQ+S � xS)�MQ;S(xQ+S � xS)�MP;�S(xQ+S � xS)

= (xS � xQ+S)(a1 +MP;�S +MQ;S)

Similarly

`Q;S(P � S) = (xS � xP�S)(a1 +MP;�S +MQ;S)

And now it is clear that both sides of (10) are equal to

(xS � xP�S)(xS � xQ+S)(a1 +MP;�S +MQ;S):

�

With that established, we can now move on to the relevant result.

Proposition 1 Let P;Q 2 E[r]. Let S 2 E be chosen such that Q + S; S =2 A(P ), P �
S;�S =2 A(Q), and that S; P; and Q satisfy the conditions of Lemma 1. Then

er(P;Q) =
< P;Q >S

< Q;P >�S

Remark: In practical applications S is easily found. For example, if P 2 R and Q =2 R
then one possibility is S = Q � P . Fortunately, as the �eld size increases, it becomes more

likely that a randomly chosen S will satisfy the required conditions.

Proof. In the Weil pairing computation, we make a special choice of A and B, namely

A = (P � S)� (�S) and B = (Q+ S)� (S):

Then we have functions fA; fB such that

div(fA) = r(P � S)� r(�S) and div(fB) = r(Q+ S)� r(S):
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Let

A0 = (P )� (O) and B0 = (Q)� (O);

and let gA0; gB0 be functions such that

div(gA0) = r(P )� r(O) and div(gB0) = r(Q)� r(O):

We want to show that
fA(B)

fB(A)
=
gA0(B)

gB0(A)

or equivalently,
fA(B)

gA0(B)
=

fB(A)

gB0(A)
:

Consider the function on left-hand-side of the above equation. We have

div

�
fA

gA0

�
= r(A)� r(A0)

= r((P � S)� (�S))� r((P )� (O))

= r((P � S)� (�S)� (P ) + (O))

= r((P � S) + (S � P )� 2(O)� (S � P )� (�S)� (P ) + 3(O))

= r

�
div

�
�P�S

`P;�S

��
:

This implies that there is a nonzero constant kA 2 K such that

fA

gA0

= kA

�
�P�S

`P;�S

�r
:

Similarly for B, there exists a constant kB such that

fB

gB0

= kB

�
�Q+S

`Q;S

�r
:

We are now reduced to showing that

kA

�
�P�S

`P;�S

�r
(B) = kB

�
�Q+S

`Q;S

�r
(A);

i.e.,

kA

�
�P�S

`P;�S

�r
((Q + S)� (S)) = kB

�
�Q+S

`Q;S

�r
((P � S)� (�S)):

However, the constants kA; kB will cancel out in their respective sides (since the divisors are

of the form (A)� (B)), and thus the result follows from Lemma 1.

�

8



4.2. The Consequences

Now that we have established that the Weil pairing is, in fact, two applications of the Tate

pairing, it is a good time to ask what it all means. First of all, this provides an upper bound

on the amount of computation needed to obtain a Weil pairing. Given that we can eÆciently

perform Miller's algorithm, the Weil pairing is only two applications of the Tate pairing and

a division away. Further, Galbraith suggests that this is in fact the most eÆcient known way
to calculate the Weil pairing [5]. Another conclusion one may draw is that the Weil pairing

only takes twice the computational time of the Tate pairing. However, this conclusion is not

always true. As Galbraith points out, since typically P 2 E(Fq ) and Q 2 E(Fqd ), computing

< Q;P > involves signi�cantly more complex �eld arithmetic than computing < P;Q >.

This leads to the Weil pairing requiring more than twice the run time of one Tate pairing.

If we return to our IBE key exchange and require that the publicly computed C is an

element of E(Fq ), then all of the pairings in the key exchange have as their �rst argument
a point in E(Fq ) and as their second argument a point in E(Fqd ). Thus, it should be
signi�cantly quicker to use the Tate pairing instead of the Weil pairing.

4.3. Experimental Timing Results

Using d = 4, we implemented the Tate pairing on the supersingular elliptic curve y2+y =
x3 + x + 1 over the �elds GF (24m) for m 2 f139; 163; 175; 199; 235g. The following table

summarizes our timing results (in seconds) along with a comparison between the timings for

a Weil and a Tate pairing. We used a Sun Sparc Ultra 5 with a speed of 270Mhz and 128Mb
RAM. However, little e�ort was put into making the algorithms eÆcient. In particular, all

arithmetic was carried out inGF (24m) when necessary, instead of using the extension method
outlined in [5] (this can be coded up at a later date). Thus, it is more prudent to compare
the relative computation times instead of the absolute times. The � column represents the

percentage of time saved by using the Tate pairing in place of the Weil pairing. This relative

percentage should not change signi�cantly with quicker algorithms.

m t(P;Q) t(Q;P ) er(P;Q) �

139 2.76 11.13 10.14 73%

163 3.83 5.03 2.75 -39%

175 4.56 17.12 15.03 70%

199 7.26 30.47 27.37 73%

235 10.19 29.72 22.93 56%

4.4. The Exceptional Case m = 163

One may notice from looking at the above table, that for m = 163, the Weil pairing is,

in fact, faster to compute than the Tate pairing. This seems to be a consequence of the

combination of the special form our large prime r with the ineÆciency of our arithmetic

operations (in particular multiplication) in the large �eld. For the elliptic curve given by

9



y2 + y = x3 + x + 1 over GF(2652), we have

r = 2163 + 282 + 20:

Since r is so sparse, the execution of Miller's algorithm is much quicker. Meanwhile, the time

to perform the exponentiation is not a�ected. Thus, the exponentiation, which is required

for the Tate pairing but not for the Weil pairing, dominates the computation, allowing the

Weil pairing to be computed more quickly.

4.5. Conclusions

The conclusions one can draw are not quite as simple as saying the Weil pairing always

requires more than twice the computational time as the Tate pairing. Instead, one may need

to take into account the density of the large prime r. However, in general, it can be said that

for two points, P and Q, in an r-torsion subgroup of an elliptic curve, with P 2 E(Fq ) and

Q 2 E(Fqd ), the Tate pairing, t(P;Q), can be computed in less than half the time it takes
to compute the Weil pairing, er(P;Q), provided r has reasonable density. At the same time,
though, it should be noted that t(Q;P ) will often take longer to compute than er(Q;P ) since,

in this case, the small-�eld property of P aids the Weil pairing, but not the Tate Pairing.

For these reasons, anyone who plans on implementing the Tate pairing in place of the Weil
pairing needs to consider the rationality of the points and the bit density of their torsion.

10



References

[1] R. Balasubramanian and N. Koblitz, \The improbability that an elliptic curve has sub-
exponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm", J.

Crypto., 11 (1998) 141-145.

[2] D. Boneh and M. Franklin, \Identity-Based Encryption from the Weil Pairing", Proc.

CRYPTO 2001, Springer LNCS 2139 (2001) 213-229.

[3] G. Frey, M. M�uller, H.-G. R�uck, \The Tate pairing and the discrete logarithm applied

to elliptic curve cryptosystems", IEEE Trans. Inform. Theory, 45, No.5 (1999) 1717-

1719.

[4] G. Frey and H.-G. R�uck, \A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves", Mathematics of Computation, 62, No.206

(1994) 865-874.

[5] S. Galbraith, K. Harrison, and D. Soldera, \Implementing the Tate pairing", Algorith-
mic Number Theory 2002, Springer LNCS 2369 (2002) 324-337.

[6] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
Boston, 1993.

[7] A. J. Menezes, T. Okamoto, and S. A. Vanstone, \Reducing elliptic curve logarithms to
logarithms in the �nite �eld", IEEE Trans. Inform. Theory, 39, No.5 (1993) 1639-1646.

[8] V. Miller, Short programs for functions on curves, unpublished manuscript, 1986.

[9] J. Silverman, The Arithmetic of Elliptic Curves, Springer GTM 106, 1986.

11


